

| Effective from Session: 2022 | 2-23                                                                         |                                                                                                                               |                                                                                                                                                                                             |   |   |   |   |
|------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| Course Code                  | EE-513                                                                       | Title of the Course                                                                                                           | Advance Power Electronics                                                                                                                                                                   | L | Т | Р | С |
| Year                         | 1 <sup>st</sup>                                                              | Semester                                                                                                                      | 1 <sup>st</sup>                                                                                                                                                                             | 4 | 0 | 0 | 4 |
| Pre-Requisite                | None                                                                         | Co-requisite                                                                                                                  | None                                                                                                                                                                                        |   |   |   |   |
| Course Objectives            | <ul> <li>Kno</li> <li>Use</li> <li>Kno</li> <li>Ide:</li> <li>Kno</li> </ul> | whedge and concept of<br>of switching technique<br>owledge and concept of<br>ntify and apply concept<br>owledge of synchronou | voltage source inverter.<br>s/schemes and current source inverters.<br>multilevel inverters, its applications and control<br>of resonant converters.<br>s rectifiers and matrix converters. |   |   |   |   |

|     | Course Outcomes                                                              |
|-----|------------------------------------------------------------------------------|
| CO1 | Know about the concepts of voltage source inverter                           |
| CO2 | Identify and apply switching techniques/schemes and current source inverters |
| CO3 | Know about concept of multilevel inverters, its applications and control.    |
| CO4 | Identify and apply concept of resonant converters                            |
| CO5 | Know about synchronous rectifiers and matrix converters.                     |

| Unit<br>No. | Title of the Unit                                                                         | Content of Unit                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|--|
| 1           | Switch-Mode<br>Inverters                                                                  | Basic concepts of voltage source inverter (VSI), current source inverters (CSI), single phase half bridge, full bridge and three phase bridge inverters.                                                    | 8               | CO1          |  |  |  |  |  |  |  |
| 2           | 8                                                                                         | CO2                                                                                                                                                                                                         |                 |              |  |  |  |  |  |  |  |
| 3           | Multi-Level<br>Inverters                                                                  | Need for multilevel inverters, Types, three level, five level inverter operation and analysis.<br>Applications of multilevel inverters and control.                                                         | 8               | CO3          |  |  |  |  |  |  |  |
| 4           | Resonant<br>Converters                                                                    | Basic resonant circuit concepts, Load resonant converters, series and parallel, resonant switch converters – Zero voltage switching (ZVS), Zero current switching (ZCS), comparison of resonant converters. | 8               | CO4          |  |  |  |  |  |  |  |
| 5           | Miscellaneous<br>Converters                                                               | Multilevel converters topologies: Cascaded, NPC, Flying Capacitor MLI, Synchronous rectifiers, matrix converters,                                                                                           | 8               | CO5          |  |  |  |  |  |  |  |
| Referen     | ce Books:                                                                                 |                                                                                                                                                                                                             |                 |              |  |  |  |  |  |  |  |
| 1. Ned N    | Aohan, "Power Electron                                                                    | ics Converters, Applications, and Design" John Wiley (SEA), 3rd Ed 2014.                                                                                                                                    |                 |              |  |  |  |  |  |  |  |
| 2. M. H.    | Rashid "Power Electro                                                                     | nics" PHI Learning                                                                                                                                                                                          |                 |              |  |  |  |  |  |  |  |
| 3. G. K.    | . Dubey, "Power Semi-C                                                                    | Conductor Controllers", Wiley Eastern, 2nd Edition, 2012.                                                                                                                                                   |                 |              |  |  |  |  |  |  |  |
| 4. R W I    | 4. R W Erickson and D Maksimovic "Fundamental of Power Electronics" Springer, 2ndEdition. |                                                                                                                                                                                                             |                 |              |  |  |  |  |  |  |  |
| 5. M.H.     | 5. M.H. Rashid, "Hand book of Power Electronics", 4th Edition,2013.                       |                                                                                                                                                                                                             |                 |              |  |  |  |  |  |  |  |
| e-Lear      | ning Source:                                                                              |                                                                                                                                                                                                             |                 |              |  |  |  |  |  |  |  |

|            |     |     |     |     |     | С   | ourse A | Articul | ation N | Aatrix: | (Mappi | ng of COs | s with PO | s and PSO | Os)  |      |      |      |
|------------|-----|-----|-----|-----|-----|-----|---------|---------|---------|---------|--------|-----------|-----------|-----------|------|------|------|------|
| PO-<br>PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9     | PO10    | PO11   | PO12      | PSO1      | PSO2      | PSO3 | PSO4 | PSO5 | PSO6 |
| CO         |     |     |     |     |     |     |         |         |         |         |        |           |           |           |      |      |      |      |
| CO1        | 3   | 2   | 2   | 1   | 1   | 3   | 3       | 1       |         |         |        |           | 1         | 2         | 2    |      |      |      |
| CO2        | 3   | 2   | 2   | 2   | 3   | 3   | 3       |         |         |         |        |           | 1         | 2         | 2    |      |      |      |
| CO3        | 3   | 2   | 2   | 1   | 1   | 3   | 3       | 1       |         |         |        |           | 1         | 2         | 1    |      |      |      |
| CO4        | 3   | 2   | 2   | 2   | 3   | 3   | 3       |         |         |         |        |           | 3         | 2         | 1    |      |      |      |
| CO5        | 3   | 3   | 3   | 3   | 3   | 3   | 2       |         |         |         |        |           | 2         | 3         | 1    |      |      |      |



| Effective from Session: 2022 | 2-23                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                |         |        |          |     |
|------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|-----|
| Course Code                  | EE-514                                                                 | Title of the Course                                                                                                              | Power Apparatus & System Modelling                                                                                                                                                                                                             | L       | Т      | Р        | С   |
| Year                         | 1 <sup>st</sup>                                                        | Semester                                                                                                                         | 1 <sup>st</sup>                                                                                                                                                                                                                                | 4       | 0      | 0        | 4   |
| Pre-Requisite                | None                                                                   | Co-requisite                                                                                                                     | None                                                                                                                                                                                                                                           |         |        |          |     |
| Course Objectives            | <ul> <li>To</li> <li>To</li> <li>To</li> <li>To</li> <li>To</li> </ul> | develop knowledge on p<br>understand the fundame<br>provide advanced know<br>analyze governors for th<br>evaluate the performanc | principles of modelling of synchronous generators<br>ntal concepts of application of Parks transformation<br>ledge and understanding about the models of transmission li<br>nermal and hydro power plant<br>re of different excitation systems | ne, tra | nsform | er and l | oad |

|     | Course Outcomes                                                        |
|-----|------------------------------------------------------------------------|
| CO1 | Understands the basic concept of modelling of synchronous generators   |
| CO2 | Apply Parks transformation technique                                   |
| CO3 | Understand different models of transmission line, transformer and load |
| CO4 | Analyze governors for thermal and hydro power plant                    |
| CO5 | Evaluate the performance of AC and DC excitation system                |

| Unit<br>No.                                                                              | Title of the Unit                                                                                                                                                                                                                                                                                                                      | Content of Unit                                                                                                                                                                                       | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|--|--|
| 1                                                                                        | Synchronous<br>Generator<br>Modeling                                                                                                                                                                                                                                                                                                   | Schematic diagram, equivalent circuit, Starting method, balanced operation, Park's transformation (dqo transformation)                                                                                | 8               | CO1          |  |  |  |  |  |  |  |  |
| 2                                                                                        | Dynamic Modeling<br>of Synchronous<br>Generator                                                                                                                                                                                                                                                                                        | Modeling of synchronous generator with damper windings; Synchronous Machine<br>Parameters: operational and standard, Effect of Saturation on Synchronous Machine<br>Modelling.                        | 8               | CO2          |  |  |  |  |  |  |  |  |
| 3                                                                                        | Modelling of<br>Excitation systems                                                                                                                                                                                                                                                                                                     | Excitation system requirements, Types of Excitation system, Control and protective function of Excitation system, Modelling of various Excitation system, IEEE type various DC, AC and Static models. | 8               | CO3          |  |  |  |  |  |  |  |  |
| 4                                                                                        | 4 Prime Movers<br>Modelling Steam turbine and Governing system:<br>Various configurations of Steam turbine of fossil- fueled and nuclear units, Modelling of<br>Steam turbine and its governing systems.<br>Hydraulic turbine transfer function, linear and Non-<br>linear turbine model, Modelling of Governors for Hydraulic turbine |                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |  |  |
| 5                                                                                        | Modelling of Other<br>Power System<br>Components                                                                                                                                                                                                                                                                                       | Induction Motor, Synchronous Motor, Transformers, transmission lines, Static and Dynamic loads, Selected FACTS Controllers (SVC and TCSC).                                                            | 8               | CO5          |  |  |  |  |  |  |  |  |
| Referen                                                                                  | ce Books:                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |  |  |
| <b>1.</b> A.A. ]                                                                         | Foud& P.M. Anderson,                                                                                                                                                                                                                                                                                                                   | "Power System Stability and Control", Galgotia Press, New Delhi, 2014.                                                                                                                                |                 |              |  |  |  |  |  |  |  |  |
| <b>2.</b> L.P. S                                                                         | Singh, "P.S. Analysis &                                                                                                                                                                                                                                                                                                                | Dynamics", Wiley Eastern, Delhi, 2014                                                                                                                                                                 |                 |              |  |  |  |  |  |  |  |  |
| <b>3.</b> P. Ku                                                                          | ndur, "Power System St                                                                                                                                                                                                                                                                                                                 | ability and Control", Mc-Graw Hill, 2010                                                                                                                                                              |                 |              |  |  |  |  |  |  |  |  |
| 4. K.R. Padiyar, "Power System Dynamics: Stability and Control", B.S. Publications, 2008 |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |  |  |
| e-Lear                                                                                   | e-Learning Source:                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |  |  |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |  |  |

|                  |     |     |     |     |     | C   | ourse A | Articul | ation N | Aatrix: ( | Mappin | ng of COs | s with PO | s and PSC | Ds)  |      |      |      |
|------------------|-----|-----|-----|-----|-----|-----|---------|---------|---------|-----------|--------|-----------|-----------|-----------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9     | PO10      | PO11   | PO12      | PSO1      | PSO2      | PSO3 | PSO4 | PSO5 | PSO6 |
| C01              | 3   | 2   |     | 1   |     |     |         |         |         |           |        | 3         | 3         | 2         | 3    |      |      |      |
| CO2              | 3   | 2   |     |     |     |     |         | 1       |         |           |        | 3         | 3         | 2         | 2    |      |      |      |
| CO3              | 3   | 1   |     |     |     |     |         |         |         |           | 2      | 3         | 3         | 2         | 3    |      |      |      |
| CO4              | 3   | 2   |     |     |     |     |         |         |         |           | 1      | 3         | 3         | 2         | 2    |      |      |      |
| CO5              | 3   | 2   |     |     |     |     |         | 1       |         |           |        | 3         | 3         | 2         | 3    |      |      |      |



| Effective from Session: 2022 | 2-23                                                        |                                                                                                                              |                                                                                                                                                                                                             |       |        |         |    |
|------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------|----|
| Course Code                  | EE-515                                                      | Title of the Course                                                                                                          | Advance Power System Analysis                                                                                                                                                                               | L     | Т      | Р       | С  |
| Year                         | 1 <sup>st</sup>                                             | Semester                                                                                                                     | 1 <sup>st</sup>                                                                                                                                                                                             | 4     | 0      | 0       | 4  |
| Pre-Requisite                | None                                                        | Co-requisite                                                                                                                 | None                                                                                                                                                                                                        |       |        |         |    |
| Course Objectives            | Kno     Kno     Kno     Kno     Kno     Kno     Kno     Kno | whedge of graph theory<br>whedge of algorithm of<br>whedge of power flow s<br>whedge of Contingency<br>owledge of Modern ene | <ul> <li>bus admittance and impedance matrices</li> <li>bus impedance matrix and short circuit studies using three-<br/>solutions</li> <li>and security studies</li> <li>argy control Techniques</li> </ul> | phase | Impeda | nce ZBU | JS |

|     | Course Outcomes                                                                                                                   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Solve the problem of graph theory, bus admittance and impedance matrices                                                          |
| CO2 | Able to attain the knowledge of algorithm of bus impedance matrix and short circuit studies using three-phase Impedance $Z_{BUS}$ |
| CO3 | Able to solve the problems of power flow solutions                                                                                |
| CO4 | Having knowledge of Contingency and security studies                                                                              |
| CO5 | Having knowledge of Modern energy control Techniques                                                                              |

| Unit<br>No. | Title of the Unit                                                                                                                                                                                                                      | Content of Unit                                                                                                                                                                                            | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|--|
| 1           | Introduction                                                                                                                                                                                                                           | System graph, loop, cut-set and incidence matrices; Algorithms for the formation<br>of bus admittance and impedance matrices, Three-phase Admittance YBUS and Impedance<br>ZBUS matrices;Optimal load flow | 8               | CO1          |  |  |  |  |  |  |  |
| 2           | 2Power flow<br>solutionsGauss-Seidel, Newton-Raphson, Approximation to Newton-Raphson Method, Line flow<br>equations and Decoupled and Fast decoupled techniques.                                                                      |                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |
| 3           | Fault Analysis                                                                                                                                                                                                                         | Symmetrical faults, Fault calculations using ZBUS, Unsymmetrical faults-Problems on various types of faults.                                                                                               | 8               | CO3          |  |  |  |  |  |  |  |
| 4           | Contingency and<br>security studies                                                                                                                                                                                                    | Factors affecting security, State transition diagram, Contingency analysis using network sensitivity method and AC power flow method.                                                                      | 8               | CO4          |  |  |  |  |  |  |  |
| 5           | 5 Modern energy<br>control Techniques Modern energy control centres, Introduction to Supervisory Control and Data Acquisition in<br>power systems(SCADA), benefit of SCADA, Remote terminal and connection, Human<br>machine interface |                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |
| Referen     | ce Books:                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |
| 1. G.W.     | Stagg & A.H. Al-Abiad                                                                                                                                                                                                                  | , "Computer Methods in Power Systems", Mc-Graw Hill, 1998.                                                                                                                                                 |                 |              |  |  |  |  |  |  |  |
| 2. Haadi    | Sadat, "Power System                                                                                                                                                                                                                   | Analysis", Tata McGraw Hill, 2002                                                                                                                                                                          |                 |              |  |  |  |  |  |  |  |
| 3. M.A.     | Pai, "Computer Technic                                                                                                                                                                                                                 | ues in Power System Analysis", Tata McGraw Hill, 2014                                                                                                                                                      |                 |              |  |  |  |  |  |  |  |
| 4. D. P.    | 4. D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", Tata McGraw Hill, 2014                                                                                                                                             |                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |
| e-Lear      | e-Learning Source:                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |

|                  |     |     |     |     |     | C   | ourse A | Articul | ation N | Aatrix: | (Mappi | ng of COs | s with PO | s and PSO | Os)  |      |      |      |
|------------------|-----|-----|-----|-----|-----|-----|---------|---------|---------|---------|--------|-----------|-----------|-----------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9     | PO10    | PO11   | PO12      | PSO1      | PSO2      | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 2   | 3   | 3   | 3   |     | 2   |         |         |         |         |        |           | 2         | 2         | 2    |      |      |      |
| CO2              | 2   | 3   | 3   | 3   |     | 2   |         |         |         |         |        |           | 2         | 3         | 2    |      |      |      |
| CO3              | 1   | 3   | 3   | 3   |     | 2   |         |         |         |         |        |           | 2         | 2         | 2    |      |      |      |
| CO4              | 1   | 2   | 3   | 3   |     | 2   |         |         |         |         |        |           | 1         | 2         | 3    |      |      |      |
| CO5              | 2   | 3   | 3   | 3   |     | 2   |         |         |         |         |        |           | 1         | 3         | 3    |      |      |      |



| Effective from Session: 2017 | 7-18                                                                                                    |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                |                                       |                                           |                                            |                                 |
|------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------|
| Course Code                  | EE-517                                                                                                  | Title of the Course                                                                                                                                                                                    | POWER SYSTEM DYNAMICS & CONTROL                                                                                                                                                                                                                                                                                                | L                                     | Т                                         | Р                                          | С                               |
| Year                         | 1 <sup>st</sup>                                                                                         | Semester                                                                                                                                                                                               | 1 <sup>st</sup>                                                                                                                                                                                                                                                                                                                | 4                                     | 0                                         | 0                                          | 4                               |
| Pre-Requisite                | None                                                                                                    | Co-requisite                                                                                                                                                                                           | None                                                                                                                                                                                                                                                                                                                           |                                       |                                           |                                            |                                 |
| Course Objectives            | <ul> <li>To<br/>and</li> <li>To</li> <li>To<br/>sys</li> <li>To<br/>rea</li> <li>To<br/>stal</li> </ul> | understand the students<br>l obtain the solution of tr<br>analyze the modeling of<br>realize and examine the<br>tem.<br>recognize the concepts<br>l time domain.<br>execute the analysis of<br>bility. | about dynamics of Power systems. To develop ability for a<br>ransient problems.<br>f synchronous machine by applying fundamental law's.<br>excitation systems and response the behavior of prime mov<br>of dynamics of synchronous generator Connected to Infini<br>f transient and voltage stability by various parameters an | nalysis<br>ver con<br>te Bus<br>d com | of syst<br>trollers<br>by inve<br>parison | em stab<br>in diffe<br>estigatio<br>with a | ility<br>erent<br>en in<br>ngle |

|     | Course Outcomes                                                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Given a Power System Dynamics Problems, students shall be able to represent this in various conventional models, identify type of system,       |
|     | apply vector algebra, and formulate the expression in different System Model and solve using mathematical terms.                                |
| CO2 | Given a Modeling of Synchronous Machine with sources, student shall be able to analyze System Simulation and evaluate the Steady State          |
|     | Performance using Equivalent Circuit of Synchronous Machine                                                                                     |
| CO3 | For a Excitation systems & Prime Mover Controllers, student shall be able to generate its analytical response by Standard Block Diagram and     |
|     | examine, analyze and evaluate the characteristics by State Equations and Load Modeling.                                                         |
| CO4 | For Stator Equation, select suitable design of application of Network Equation, develop various combination for System Simulation Small Signal  |
|     | and large signal analysis with Block Diagram Representation for Single Machine System,                                                          |
| CO5 | Given a Modeling and Analysis of Transient and Voltage Stability, student shall be able to define its Stability Evaluation, solve/ analyze, and |
|     | modify energy functions for direct stability evaluation;                                                                                        |

| Unit<br>No. | Title of the Unit       | Content of Unit                                                                            | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-------------------------|--------------------------------------------------------------------------------------------|-----------------|--------------|
|             | Analysis of             | Concept of Equilibrium, Small and Large Disturbance Stability, Single Machine Infinite Bus | 8               | CO1          |
| 1           | Dynamical               | System, Modal Analysis of Linear Systems, Analysis using Numerical Integration             |                 |              |
|             | Systems                 | Techniques, Issues in Modelling: Slow and Fast Transients, Stiff Systems.                  | -               |              |
|             | Modelling of a          | Physical Characteristics, Rotor Position Dependent model, D-Q Transformation, Model with   | 8               | CO2          |
| 2           | Synchronous             | Standard Parameters, Steady State Analysis of Synchronous Machine, and Synchronous         |                 |              |
|             | Machine                 | Machine Connected to Infinite Bus.                                                         |                 |              |
|             | Modelling of            | Physical Characteristics and Models, Control system components, Excitation System          | 8               | CO3          |
| 2           | Excitation and          | Controllers, Prime Mover Control Systems.                                                  |                 |              |
| 3           | Prime Mover             |                                                                                            |                 |              |
|             | Systems                 |                                                                                            |                 |              |
|             | Modelling of            | Transmission Line Physical Characteristics, Transmission Line Modelling, Load Models -     | 8               | CO4          |
| 4           | Transmission            | induction machine model, Other Subsystems - HVDC, protection systems.                      |                 |              |
|             | Lines and Loads         |                                                                                            |                 |              |
|             | Stability Issues in     | Single Machine Infinite Bus System, Multi-machine Systems, Stability of Relative Motion.   | 8               | CO5          |
| 5           | Interconnected          | Frequency Stability: Centre of Inertia Motion, Single Machine Load Bus System: Voltage     |                 |              |
|             | Power Systems           | Stability, Torsional Oscillations, Real-Time Simulators.                                   |                 |              |
| Referen     | ce Books:               |                                                                                            |                 |              |
| 1. K.R.P    | adiyar, Power System I  | Dynamics, Stability & Control, 2nd Edition, B.S. Publications, Hyderabad, 2002.            |                 |              |
| 2. P.Kur    | ndur, Power System Stal | pility and Control, McGraw Hill Inc, New York, 1995.                                       |                 |              |
| 3. P.Sau    | er & M.A.Pai, Power Sy  | ystem Dynamics & Stability, Prentice Hall, 1997.                                           |                 |              |
| e-Lear      | ning Source:            |                                                                                            |                 |              |

|            |     |     |     |     |     | C   | ourse A | Articul | ation N | Aatrix: | (Mappi | ng of COs | s with PO | s and PSO | Os)  |      |      |      |
|------------|-----|-----|-----|-----|-----|-----|---------|---------|---------|---------|--------|-----------|-----------|-----------|------|------|------|------|
| PO-<br>PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9     | PO10    | PO11   | PO12      | PSO1      | PSO2      | PSO3 | PSO4 | PSO5 | PSO6 |
| 0.         | -   | -   | -   |     |     |     |         |         |         |         | -      |           | -         |           | -    |      |      |      |
| CO1        | 3   | 2   | 2   |     |     |     |         |         |         |         |        |           | 3         |           | 1    |      |      |      |
| CO2        | 3   | 3   | 2   | 2   | 2   |     |         |         |         |         |        |           | 3         |           | 3    |      |      |      |
| CO3        | 3   | 3   | 1   |     |     |     |         |         |         |         |        |           |           | 3         | 2    |      |      |      |
| CO4        | 3   | 2   | 3   | 2   | 3   |     |         |         |         | 2       | 2      |           | 2         |           | 1    |      |      |      |
| CO5        | 3   | 3   | 3   |     |     | 2   | 1       |         |         |         |        |           |           | 3         | 2    |      |      |      |



| Effective from Session: 2017 | 7-18                                          |                                                                                |                                      |   |   |   |   |
|------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|---|---|---|---|
| Course Code                  | EE-518                                        | Title of the Course                                                            | Computer Aided Power System Analysis | L | Т | Р | С |
| Year                         | 1 <sup>st</sup>                               | Semester                                                                       | 2 <sup>nd</sup>                      | 4 | 0 | 0 | 4 |
| Pre-Requisite                | None                                          | Co-requisite                                                                   | None                                 |   |   |   |   |
| Course Objectives            | <ul><li>Det</li><li>Ana</li><li>Fau</li></ul> | ermination of network s<br>alyze load flow using ite<br>lt analysis estimation | ensitivity,<br>trative methods       |   |   |   |   |

|     | Course Outcomes                                                          |
|-----|--------------------------------------------------------------------------|
| CO1 | Analysis of power system network in term of matrices                     |
| CO2 | Load flow analysis using iterative methods                               |
| CO3 | Analysis of fault under balance and unbalanced condition                 |
| CO4 | Estimation of the state of the power system using statistical tools      |
| CO5 | Analysis of load frequency control for single area and multi area system |

| Unit<br>No.                                                                             | Title of the Unit                                                                                                                                                                                                                                                                                                | Content of Unit                                                                                                                                                                                                                                                                                                                                                    | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|
| 1                                                                                       | Introduction                                                                                                                                                                                                                                                                                                     | Solution of Linear Systems and Contingency Analysis, Matrix representation of power<br>systems, Triangularization, Gaussian elimination, LU and LDU factorization LDLT<br>decomposition for<br>sparse Matrices, Optimal ordering, Overview of Security Analysis, Linear Sensitivity Factors,<br>Contingency Selection, Calculation of Network Sensitivity Factors. | 8               | CO1          |  |  |  |  |  |  |
| 2                                                                                       | 2 Load Flow Analysis Newton–Raphson iteration, Power system applications: Power flow,<br>Formulation of Bus admittance matrix, regulating transformers, Gauss-Seidel, Newton-<br>Raphson and Fast Decoupled methods of power flow, Treatment of voltage-controlled buses,<br>Accelerating factors, DC load flow. |                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 3                                                                                       | Power flow solutions                                                                                                                                                                                                                                                                                             | Short Circuit Studies, System Representation, Algorithm for formation of bus impedance matrix, Balanced fault, Sequence impedances of power system components, Unbalanced fault Analysis.                                                                                                                                                                          | 8               | CO3          |  |  |  |  |  |  |
| 4                                                                                       | Power System<br>State Estimation                                                                                                                                                                                                                                                                                 | Power System State Estimation, Power system state estimator, Method of Least Squares, Statistics, Errors and Estimates, Test for bad data, Network Topology Processing.                                                                                                                                                                                            | 8               | CO4          |  |  |  |  |  |  |
| 5                                                                                       | Modern control<br>Techniques                                                                                                                                                                                                                                                                                     | Unit Commitment and Load Frequency Control, Constraints in UC, Solution Methods of UC,<br>Automatic Load Frequency Control of Single Area System and Multi Area System, Steady<br>State Instabilities.                                                                                                                                                             | 8               | CO5          |  |  |  |  |  |  |
| Referen                                                                                 | ce Books:                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 1. Hadi S                                                                               | Saadat, "Power System                                                                                                                                                                                                                                                                                            | Analysis", Tata Mc Graw Hill, 2003.                                                                                                                                                                                                                                                                                                                                |                 |              |  |  |  |  |  |  |
| 2. A. J. V                                                                              | Wood and B.F.Wollenbe                                                                                                                                                                                                                                                                                            | erg, "Power Generation Operation and Control", John Wiley & Sons, ICN., 2nd Edition.                                                                                                                                                                                                                                                                               |                 |              |  |  |  |  |  |  |
| 3. A. K.I<br>"Power S                                                                   | Mahalanabis, "Compute<br>System Analysis", McG                                                                                                                                                                                                                                                                   | r Aided Power system analysis and control", Tata McGraw Hill 1991 4. John J. Grainger, Willia raw Hill, 1994.                                                                                                                                                                                                                                                      | m D. Steven     | son, JR.     |  |  |  |  |  |  |
| 5. Elgere                                                                               | l olleI, "Electric Energy                                                                                                                                                                                                                                                                                        | Sytems Theory- An Introduction", Tata Mc Graw Hill, 2ed. 1995.                                                                                                                                                                                                                                                                                                     |                 |              |  |  |  |  |  |  |
| 6. I. J. Nagrath & D.P. Kothari, "Modern Power System Analysis", Tata McGraw Hill, 1989 |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |
| 7.Wadhy                                                                                 | wa C L, "Electrical Pow                                                                                                                                                                                                                                                                                          | er Systems", New Age Publication, 3ed., 2002                                                                                                                                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |
| . I com                                                                                 | •                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                    |                 |              |  |  |  |  |  |  |

e-Learning Source:

|            |     |     |     |     |     | С   | ourse A | Articul | ation N | Aatrix: | (Mappiı | ng of COs | s with PO | s and PSO | Ds)  |      |      |      |
|------------|-----|-----|-----|-----|-----|-----|---------|---------|---------|---------|---------|-----------|-----------|-----------|------|------|------|------|
| PO-<br>PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9     | PO10    | PO11    | PO12      | PSO1      | PSO2      | PSO3 | PSO4 | PSO5 | PSO6 |
| C01        | 1   | 2   | 3   |     |     |     |         |         |         |         |         |           | 2         | 3         | 1    |      |      |      |
| CO2        |     | 3   | 2   |     |     |     |         |         |         |         |         |           | 2         | 3         | 2    |      |      |      |
| CO3        | 2   | 3   | 2   |     |     |     |         |         |         |         |         |           | 3         | 2         | 2    |      |      |      |
| CO4        | 2   | 3   | 2   |     |     |     |         |         |         |         |         |           | 3         | 2         | 3    |      |      |      |
| CO5        | 2   | 2   | 2   |     |     |     |         |         |         |         |         |           | 2         | 2         | 2    |      |      |      |



| Effective from Session: 2017 | 7-18            |                          |                                 |   |   |   |   |
|------------------------------|-----------------|--------------------------|---------------------------------|---|---|---|---|
| Course Code                  | EE-519          | Title of the Course      | ADVANCE RELAYING AND PROTECTION | L | Т | Р | С |
| Year                         | 1 <sup>st</sup> | Semester                 | 2 <sup>nd</sup>                 | 4 | 0 | 0 | 4 |
| Pre-Requisite                | None            | Co-requisite             | None                            |   |   |   |   |
| Course Objectives            | • Apj           | ply the knowledge of rel | ays in power system protection  |   |   |   |   |

|     | Course Outcomes                                                     |
|-----|---------------------------------------------------------------------|
| CO1 | To learn the basics of relays                                       |
| CO2 | Knowledge of relay applications                                     |
| CO3 | Knowledge of protection of generator, motors and transformers       |
| CO4 | Study of different types of system grounding, faults and protection |
| CO5 | Knowledge of digital relays                                         |

| Unit<br>No.                                                                                                                                                                                                                                                                                                                        | Title of the Unit        | Content of Unit                                                                                                                                                                                                                           | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|--|
| 1                                                                                                                                                                                                                                                                                                                                  | Protective<br>Relaying   | Relay terminology, Definitions, Classification, electromechanical, static and digital-numerical relays. Design-factors affecting performance of a protection scheme; faults-types and evaluation, Instrument transformers for protection. | 8               | CO1          |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                  | 8                        | CO2                                                                                                                                                                                                                                       |                 |              |  |  |  |  |  |  |  |
| Protection of<br>3       Generator, Transformer, Transmission Systems, Busbars, Motors; Pilotwire and Carrier<br>Equipments       8       CO3                                                                                                                                                                                      |                          |                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                  | System Grounding         | Ground faults and protection; Load shedding and frequency relaying; Out of step relaying; Re-closing and synchronizing.                                                                                                                   | 8               | CO4          |  |  |  |  |  |  |  |
| 5         Basic Elements Of<br>Digital Protection         Digital signal processing, Digital filtering in protection relay, Digital Data transmission,<br>Numeric relay hardware, relay algorithm, distance relays, direction comparison relays,<br>differential relays, software considerations, numeric relay testing.         8 |                          |                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |  |  |
| Referen                                                                                                                                                                                                                                                                                                                            | ce Books:                |                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |  |  |
| 1. A T Jo                                                                                                                                                                                                                                                                                                                          | ohn and A K Salman-Di    | gital protection for power systems-IEEE power series-15, Peter Peregrines Ltd, UK,1997                                                                                                                                                    |                 |              |  |  |  |  |  |  |  |
| 2. C.R. N                                                                                                                                                                                                                                                                                                                          | Mason, The art and scien | nce of protective relaying, John Wiley &sons, 2002                                                                                                                                                                                        |                 |              |  |  |  |  |  |  |  |
| 3. Donal                                                                                                                                                                                                                                                                                                                           | d Reimert, Protective re | laying for power generation systems, Taylor & Francis-CRC press 2006                                                                                                                                                                      |                 |              |  |  |  |  |  |  |  |
| 4. Gerha                                                                                                                                                                                                                                                                                                                           | rd Ziegler-Numerical di  | stance protection, Siemens, 2nd ed, 2006                                                                                                                                                                                                  |                 |              |  |  |  |  |  |  |  |
| 5. A.R.V                                                                                                                                                                                                                                                                                                                           | Varrington, Protective R | elays, Vol .1&2, Chapman and Hall, 1973                                                                                                                                                                                                   |                 |              |  |  |  |  |  |  |  |
| 6. T S.M                                                                                                                                                                                                                                                                                                                           | ladhav Rao, Power syste  | em protection static relays with microprocessor applications, Tata McGraw Hill, 1994                                                                                                                                                      |                 |              |  |  |  |  |  |  |  |
| 7. Helmut Ungrad, Wilibald Winkler, Andrzej Wiszniewski, Protection techniques in electrical energy systems, Marce Dekker, Inc. 1995                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |  |  |
| 8. Badri                                                                                                                                                                                                                                                                                                                           | Ram, D.N. Vishwakarı     | na, Power system protection and switch gear, Tata McGraw Hill, 2001.                                                                                                                                                                      |                 |              |  |  |  |  |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                  |                          |                                                                                                                                                                                                                                           |                 |              |  |  |  |  |  |  |  |

e-Learning Source:

|                  |     |     |     |     |     | C   | ourse A | Articul | ation N | Aatrix: | (Mappi | ng of COs | s with PO | s and PS | Os)  |      |      |      |
|------------------|-----|-----|-----|-----|-----|-----|---------|---------|---------|---------|--------|-----------|-----------|----------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7     | PO8     | PO9     | PO10    | PO11   | PO12      | PSO1      | PSO2     | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 3   |     |     | 1   |     |     |         |         |         |         |        |           | 1         | 2        | 1    |      |      |      |
| CO2              | 3   | 2   |     | 1   |     |     |         |         |         |         |        |           | 2         | 1        | 1    |      |      |      |
| CO3              | 3   | 1   |     |     | 1   |     |         |         |         |         |        |           | 1         | 2        | 2    |      |      |      |
| CO4              | 3   | 1   |     | 2   |     |     |         |         |         |         |        |           | 2         | 1        | 3    |      |      |      |
| CO5              | 3   | 1   | 2   |     | 1   |     |         |         |         |         |        |           | 3         | 1        | 1    |      |      |      |



| Effective from Session: 2017 | Effective from Session: 2017-18                   |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                    |                                           |                                          |                             |  |  |  |  |  |
|------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------|--|--|--|--|--|
| Course Code                  | EE-520                                            | Title of the Course                                                                                                                                                          | ADVANCE RELAYING AND PROTECTION                                                                                                                                                                                                                                                     | L                                  | Т                                         | Р                                        | С                           |  |  |  |  |  |
| Year                         | 1 <sup>st</sup>                                   | Semester                                                                                                                                                                     | 2 <sup>nd</sup>                                                                                                                                                                                                                                                                     | 4                                  | 0                                         | 0                                        | 4                           |  |  |  |  |  |
| Pre-Requisite                | None                                              | Co-requisite                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                |                                    |                                           |                                          |                             |  |  |  |  |  |
| Course Objectives            | To     Con     To     sysi     To     pov     opt | provide students the kn<br>htrol (LFC)<br>provide a solid foundati<br>tem in Turbine models.<br>provide the knowledge<br>ver generation operation<br>imal power flow problem | owledge of optimization techniques used in the power syst<br>ion in mathematical and engineering fundamentals required<br>of Hydrothermal scheduling, reactive power control,basic<br>n and control, review of optimization, economic dispatch p<br>ms, and their solution methods. | em an<br>to cor<br>objec<br>proble | d Load<br>ntrol the<br>tive of<br>ns, for | Freque<br>govern<br>security<br>nulatior | ncy<br>iing<br>y in<br>1 of |  |  |  |  |  |

|     | Course Outcomes                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Optimization, network and economic analysis of power system network.                                                                          |
| CO2 | Analyze and implement the power flow problem and its solution. Introduce the coordination equations, incremental losses, and penalty factors. |
| CO3 | Understand the constraints in unit commitment and implementation these constraints for solving the different solution methods for unit        |
|     | commitment problem.                                                                                                                           |
| CO4 | Understand, analyze hydro generator coordination problem and generation rescheduling                                                          |
| CO5 | Knowledge of modern power system and the factors needed for updation                                                                          |

| Unit<br>No. | Title of the Unit                 | Content of Unit                                                                                                                                                                                                                                                                                           | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Introduction                      | Characteristics of power generation units(thermal, nuclear, hydro, pumped hydro), variation<br>in thermal unit characteristics with multiple valves, Economic dispatch with and without line<br>losses, lambda iteration method, gradient method, Newton's method, base point and<br>participation factor | 8               | CO1          |
| 2           | Transmission<br>losses            | Co-ordination equations, incremental losses, penalty factors, B matrix loss formula (without derivation), methods of calculating penalty factors.                                                                                                                                                         | 8               | CO2          |
| 3           | Unit commitment                   | Constraints in unit commitment, priority list method, Dynamic programming method and Lagrange relaxation methods. Generation with limited energy supply, take or pay fuel supply contract, composite generation production cost function, gradient search techniques.                                     | 8               | CO3          |
| 4           | Hydrothermal co-<br>ordination:   | Scheduling energy, short term hydrothermal scheduling, lambda-gamma iteration method, gradient method, cascaded hydro plants, pumped storage hydro scheduling.                                                                                                                                            | 8               | CO4          |
| 5           | Optimal power<br>flow formulation | Gradient and Newton method, linear programming methods.<br>Automatic voltage regulator, load frequency control, single area system, multi-area system,<br>tie line control.                                                                                                                               | 8               | CO5          |
| Referen     | ce Books:                         |                                                                                                                                                                                                                                                                                                           |                 |              |
| 1. Allen    | J. Wood and Bruce F.              | Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2003.                                                                                                                                                                                                                     |                 |              |
| 2. Olle.I   | Elgerd, 'Electric Energ.          | y Systems theory – An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th re                                                                                                                                                                                                             | print, 2010.    |              |
| 3. Abhij    | it Chakrabarti, Sunita H          | alder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third                                                                                                                                                                                                            | d Edition, 20   | )10.         |
| 4. Abhij    | it Chakrabarti, Sunita H          | alder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third                                                                                                                                                                                                            | d Edition, 20   | )10.         |
| 5. N.V.F    | amana, "Power System              | Operation and Control," Pearson, 2011.                                                                                                                                                                                                                                                                    |                 |              |

e-Learning Source:

|                  | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 3                                                              | 2   | 3   | 3   | 2   | 3   | 2   |     | 2   |      | 2    |      | 3    | 2    | 1    |      |      |      |
| CO2              | 3                                                              | 1   | 3   | 1   | 2   | 1   |     |     | 1   |      | 1    |      | 1    | 2    | 1    |      |      |      |
| CO3              | 3                                                              | 2   | 3   | 3   | 2   | 1   | 2   |     | 1   | 1    | 2    |      | 3    | 2    | 2    |      |      |      |
| CO4              | 3                                                              | 1   | 3   | 2   | 2   | 1   |     |     | 1   | 1    |      |      | 2    | 2    | 1    |      |      |      |
| CO5              | 3                                                              | 2   | 2   | 2   | 3   | 2   | 2   | 1   | 2   | 2    |      |      | 3    | 2    | 2    |      |      |      |



| Effective from Session: 2017-18 |                 |                                                            |                                                             |      |   |   |   |  |  |  |  |
|---------------------------------|-----------------|------------------------------------------------------------|-------------------------------------------------------------|------|---|---|---|--|--|--|--|
| Course Code                     | EE-521          | -521 Title of the Course High Voltage Testing Techniques L |                                                             |      |   |   |   |  |  |  |  |
| Year                            | 1 <sup>st</sup> | Semester                                                   | 2 <sup>nd</sup>                                             | 4    | 0 | 0 | 4 |  |  |  |  |
| Pre-Requisite                   | None            | Co-requisite                                               | None                                                        |      |   |   |   |  |  |  |  |
| Course Objectives               | • Kn            | owledge of different typ                                   | es of HV testing methods used in testing electrical equipme | nt's |   |   |   |  |  |  |  |

|     | Course Outcomes                                                                  |  |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1 | Determination of switching surges using impulse testing on generators            |  |  |  |  |  |  |  |  |
| CO2 | Determination of voltage time characteristics for different specimens            |  |  |  |  |  |  |  |  |
| CO3 | Determination of voltage time characteristics for insulators, bushings etc.      |  |  |  |  |  |  |  |  |
| CO4 | Analyze the results of impulse and p.f. tests on dielectrics                     |  |  |  |  |  |  |  |  |
| CO5 | Analyze the transformers, capacitors and cables with different types of HV tests |  |  |  |  |  |  |  |  |

| Unit<br>No. | Title of the Unit                              | Content of Unit                                                                                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO |
|-------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Generation of High<br>Voltages and<br>Currents | Need and importance of impulse testing. Study of impulse voltage and current generators<br>Generators for Lightning and Switching Impulse Voltages, Chopped Impulse Voltages, Steep-<br>Front Impulse Voltages, Exponential Impulse Currents, Rectangular Impulse Currents. | 8               | CO1          |
| 2           | Volt-time<br>characteristics I                 | Method of wave shaping and oscillographic measurement; Volt-time characteristics of rod-rod, sphere-sphere, rod-plane gaps.                                                                                                                                                 | 8               | CO2          |
| 3           | Volt-time<br>characteristics II                | Volt-time characteristics of insulators, bushings, gaps of positive and negative polarity, horn gap, rod gap, lightning arresters – expulsion type, valve type.                                                                                                             | 8               | CO3          |
| 4           | Testing Techniques<br>I                        | Current testing of lightning arresters – Long duration impulse current test, Operating Duty Cycle Test; Testing of dielectrics – Power frequency tests, Impulse tests; Applications of insulating materials.                                                                | 8               | CO4          |
| 5           | Testing Techniques<br>II                       | Testing of transformers – Induced over voltage test, Partial discharge test, Impulse test;<br>Testing of Capacitors; Testing of Cables - Dielectric Power Factor Test, High Voltage Tests,<br>Partial discharge measurement.                                                | 8               | CO5          |
| Referen     | ce Books:                                      |                                                                                                                                                                                                                                                                             |                 |              |
| 1. M.S. 1   | Naidu & V. Kamaraju, ''                        | High Voltage Engineering", McGraw-Hill, 2014                                                                                                                                                                                                                                |                 |              |
| 2. C.L. V   | Wadhwa, "High Voltage                          | Engineering", New Age International Publishers, 2014                                                                                                                                                                                                                        |                 |              |
| 3. Subir    | Ray, "An Introduction t                        | o High Voltage Engineering", Prentice Hall of India, 2004.                                                                                                                                                                                                                  |                 |              |
| e-Lear      | ning Source:                                   |                                                                                                                                                                                                                                                                             |                 |              |

#### Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 2 2 2 3 1 1 CO1 2 2 3 1 1 1 CO2 2 2 1 1 1 3 CO3 2 2 3 1 1 1 CO4 3 2 3 1 1 1 CO5



| Effective from Session: 2017-18 |                 |                          |                                                               |      |   |   |   |  |  |  |  |
|---------------------------------|-----------------|--------------------------|---------------------------------------------------------------|------|---|---|---|--|--|--|--|
| Course Code                     | EE-522          | Title of the Course      | High Voltage Testing Techniques                               | L    | Т | Р | С |  |  |  |  |
| Year                            | 1 <sup>st</sup> | Semester                 | 2 <sup>nd</sup>                                               | 4    | 0 | 0 | 4 |  |  |  |  |
| Pre-Requisite                   | None            | Co-requisite             | None                                                          |      |   |   |   |  |  |  |  |
| Course Objectives               | • Kno           | owledge of different typ | es of HV testing methods used in testing electrical equipment | nt's |   |   |   |  |  |  |  |

|     | Course Outcomes                                        |  |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1 | Knowledge of different types of power system stability |  |  |  |  |  |  |  |  |
| CO2 | To get knowledge of energy function                    |  |  |  |  |  |  |  |  |
| CO3 | To attain knowledge of modelling of machines           |  |  |  |  |  |  |  |  |
| CO4 | To study about power system stabilizer                 |  |  |  |  |  |  |  |  |
| CO5 | To have the knowledge of voltage stability             |  |  |  |  |  |  |  |  |

| Unit<br>No.     | Title of the Unit              | Content of Unit                                                                                   | Contact<br>Hrs. | Mapped<br>CO |
|-----------------|--------------------------------|---------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1               | Power System                   | States of operation, Basic concepts of angular and voltage stability. Angular stability: Analysis | 8               | CO1          |
| 1               | Stability                      | of single machine and multi-machine systems for transient stability.                              |                 |              |
| 2               | Energy function                | Digital simulation and energy function methods. Energy function analysis of single machine        | 8               | CO2          |
|                 | Energy function                | system. Small signal stability (dynamic stability)                                                |                 |              |
| 2               | Modeling of                    | Modeling for single machine and multi-machine systems, Synchronizing and damping torque           | 8               | CO3          |
| 3               | machines                       | analysis, Eigen value and time domain analysis.                                                   |                 |              |
| 4               | Power System                   | Mitigation using power system stabilizer and FACTS controllers. Basic concepts in applying        | 8               | CO4          |
| 4               | Stabilizer (PSS)               | PSS, Control Signals, Structure and tuning of PSS Introduction to sub synchronous resonance.      |                 |              |
| -               | <b>X7 - 14 1 - 11 * 11 * 4</b> | Power-Voltage (P-V) and Reactive Power-Voltage (Q-V) curves, static analysis, sensitivity         | 8               | CO5          |
| 5               | voltage stability              | and continuation method. Dynamic analysis.                                                        |                 |              |
| Referen         | ce Books:                      |                                                                                                   |                 |              |
| <b>1.</b> P. Ku | ndur Power System Stal         | pility and Control, Mc - Graw Hill .                                                              |                 |              |
| <b>2.</b> K. R. | Padiyar Power System           | Dynamics, Stability & Control, Interline Publishers, Bangalore                                    |                 |              |
| 3. P. Sau       | ar and M. A. Pai Power         | System Dynamics & Stability, Prentice Hall                                                        |                 |              |
| <b>4.</b> G.W.  | Stagg & A.H. Al Abiad          | Computer Methods in Power System, Mc - Graw Hill                                                  |                 |              |
| e-Lear          | ning Source:                   |                                                                                                   |                 |              |

|                  | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 3                                                              | 1   | 1   | 1   | 1   | 1   | 1   |     |     |      | 3    |      |      | 2    | 2    |      |      |      |
| CO2              | 3                                                              | 3   | 3   | 2   | 2   | 1   |     |     |     |      | 3    |      | 1    | 2    |      |      |      |      |
| CO3              | 3                                                              | 2   | 2   | 2   | 2   | 1   |     |     |     |      | 3    |      | 2    | 3    |      |      |      |      |
| CO4              | 3                                                              | 1   | 1   | 1   | 1   | 1   | 1   |     |     |      | 3    |      |      | 2    | 3    |      |      |      |
| CO5              | 3                                                              | 1   | 1   | 1   | 1   | 1   | 1   |     |     |      | 3    |      |      | 2    |      |      |      |      |



| Effective from Session: 2017-18 |                                                  |                                                                             |                                        |   |   |   |   |  |  |  |  |
|---------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|---|---|---|---|--|--|--|--|
| Course Code                     | EE-523                                           | Title of the Course                                                         | Course         Advance Electric Drives |   |   |   |   |  |  |  |  |
| Year                            | 1 <sup>st</sup>                                  | Semester                                                                    | 2 <sup>nd</sup>                        | 4 | 0 | 0 | 4 |  |  |  |  |
| Pre-Requisite                   | None                                             | Co-requisite                                                                | None                                   |   |   |   |   |  |  |  |  |
| Course Objectives               | <ul> <li>Kno</li> <li>Eva</li> <li>Mo</li> </ul> | owledge of AC and DC<br>duate performance of d<br>delling of drives using s | drives<br>rives<br>software            |   |   |   |   |  |  |  |  |

|     | Course Outcomes                                       |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| CO1 | Analyze the motoring and braking operation in drives  |  |  |  |  |  |  |  |  |  |
| CO2 | Control the motors using different methods            |  |  |  |  |  |  |  |  |  |
| CO3 | Mathematical modelling of different drives topologies |  |  |  |  |  |  |  |  |  |
| CO4 | Analyze the drives under unbalanced condition         |  |  |  |  |  |  |  |  |  |
| CO5 | Analyze different types of SM drives                  |  |  |  |  |  |  |  |  |  |

| Unit<br>No. | Title of the Unit              | Content of Unit                                                                                                                                                                                                                                                 | Contact<br>Hrs. | Mapped<br>CO |
|-------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | DC Motor Drive                 | Characteristics of different dc motors: their speed control and braking operations: Converter fed dc motor drives: Analysis for motoring and braking operations. Dynamic modelling of dc motor drives; Closed-loop control; Dual converter fed dc motor drives. | 8               | CO1          |
| 2           | Induction Motor<br>Drive I     | 8                                                                                                                                                                                                                                                               | CO2             |              |
| 3           | Induction Motor<br>Drive II    | Field Oriented Control of IM: configurations, mathematical modelling. VSI- and CSI- based schemes, Slip-power recovery schemes: static Scherbius and Kramer drives, Doubly-fed IM drive.                                                                        | 8               | CO3          |
| 4           | Synchronous<br>Motor Drives I  | 8                                                                                                                                                                                                                                                               | CO4             |              |
| 5           | Synchronous<br>motor drives II | 8                                                                                                                                                                                                                                                               | CO5             |              |
| Referen     | ce Books:                      |                                                                                                                                                                                                                                                                 |                 |              |
| 1. "Powe    | er Electronics and Moto        | r Drives – Advances and Trends" IEEE Press, 2006 by B.K. Bose.                                                                                                                                                                                                  |                 |              |
| 2. "Powe    | er S.C.drives" Prentice-       | Hall 1989 by G.K. Dubey.                                                                                                                                                                                                                                        |                 |              |
| 3. "Elect   | tric Motor Drives", , Mo       | odeling, Analysis and Control", Prentice Hall of India, 2002 by R. Krishnan                                                                                                                                                                                     |                 |              |
| 4. "High    | Power Converters and           | AC Drives"IEEE Press, A John Wiley and Sons, Inc., 2006 by Bin Wu.                                                                                                                                                                                              |                 |              |
| e-Lear      | ning Source:                   |                                                                                                                                                                                                                                                                 |                 |              |

|                  | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |
|------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PSO6 |
| CO1              | 3                                                              | 3   | 3   |     |     |     |     |     |     |      |      |      | 1    | 3    | 2    |      |      |      |
| CO2              | 3                                                              | 2   | 2   |     |     |     |     |     |     |      |      |      | 1    | 2    | 3    |      |      |      |
| CO3              | 3                                                              | 3   | 2   |     |     |     |     |     |     |      |      |      | 2    | 3    | 3    |      |      |      |
| CO4              | 2                                                              | 2   | 2   |     |     |     |     |     |     |      |      |      |      |      | 2    |      |      |      |
| CO5              | 2                                                              | 2   | 3   |     |     |     |     |     |     |      |      |      | 2    |      |      |      |      |      |



| Effective from Session: 2017-18 |                                                                        |                                                                                                                                   |                                                                                                                                                                                                     |   |   |   |   |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|--|
| Course Code                     | EE524                                                                  | Title of the Course                                                                                                               | Course         Advance Power Electronics Lab                                                                                                                                                        |   |   |   |   |  |  |  |  |  |
| Year                            | Ι                                                                      | Semester                                                                                                                          | П                                                                                                                                                                                                   | 0 | 0 | 2 | 1 |  |  |  |  |  |
| Pre-Requisite                   |                                                                        | Co-requisite                                                                                                                      |                                                                                                                                                                                                     |   |   |   |   |  |  |  |  |  |
| Course Objectives               | <ul> <li>To</li> <li>To</li> <li>To</li> <li>To</li> <li>To</li> </ul> | understand and experim<br>understand the working<br>understand the DC Con<br>understand the use of si<br>understand the applicati | ent with the Phase control of SCR using RC triggers circuit<br>of SMPS and its output characteristics<br>verters and dual converters<br>ngle phase converter.<br>on of VSI in three phase machines. |   |   |   |   |  |  |  |  |  |

|     | Course Outcomes                                                                   |
|-----|-----------------------------------------------------------------------------------|
| CO1 | Adopt, perform, analyze the use of Phase control of SCR using RC triggers circuit |
| CO2 | Adopt, perform, analyze the working of SMPS and its output characteristics        |
| CO3 | Adopt, perform, analyze the DC Converters and dual converters                     |
| CO4 | Adopt, perform, analyze the use of single phase converter.                        |
| CO5 | Adopt, perform, analyze the application of VSI in three phase machines.           |

| Exp.<br>No. | Title of the Unit                                                                        | Content of Experiment                                                                                | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|
| 1           |                                                                                          | To study the Phase control of SCR using RC triggers circuit                                          | 2               | 1            |  |  |  |  |
| 2           |                                                                                          | 2                                                                                                    | 2               |              |  |  |  |  |
| 3           | 3 To study the speed control of single phase dual converter                              |                                                                                                      |                 |              |  |  |  |  |
|             | To obtain the output of chopper (step-down) based on DC shunt motor Drive using SIMULINK |                                                                                                      |                 |              |  |  |  |  |
| 4           |                                                                                          | 2                                                                                                    | 4               |              |  |  |  |  |
| 5           |                                                                                          | To study speed control of 1- phase induction motor using single phase AC voltage converter           | 2               | 4            |  |  |  |  |
| 6           |                                                                                          | Obtain the output of half wave converter (single phase) based on DC shunt motor Drive using SIMULINK | 2               | 4            |  |  |  |  |
| 7           |                                                                                          | To study the speed control of three phase squirrel cage induction motor using VSI                    | 2               | 5            |  |  |  |  |
| Referen     | ce Books:                                                                                |                                                                                                      |                 |              |  |  |  |  |
| 1. Ned N    | Iohan, Tore M, Undelna                                                                   | ad, William P, Robbins (3rd Edition), "Power Electronics: Converters, Applications and Design,"      | " Wiley 2002    | 2.           |  |  |  |  |
| 2. L. Un    | nanand, Power Electroni                                                                  | cs - Essentials and Applications; Wiley India Pvt. Ltd, Reprint Edithion, 2014                       |                 |              |  |  |  |  |
| 3. P.C Se   | en.,' Modern Power Ele                                                                   | ctronics ', Wheeler publishing Co, First Edition, New Delhi, 1998.                                   |                 |              |  |  |  |  |
| 4. M H F    | Rashid, Power Electroni                                                                  | cs - Circuits, Devices and Applications; PHI, New Delhi, 3rd Edition, 2004                           |                 |              |  |  |  |  |
| e-Lear      | ning Source:                                                                             |                                                                                                      |                 |              |  |  |  |  |
|             |                                                                                          |                                                                                                      |                 |              |  |  |  |  |
|             |                                                                                          |                                                                                                      |                 |              |  |  |  |  |
|             |                                                                                          |                                                                                                      |                 |              |  |  |  |  |
|             |                                                                                          |                                                                                                      |                 |              |  |  |  |  |
|             |                                                                                          |                                                                                                      |                 |              |  |  |  |  |

| PO-PSO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | POS | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 |      |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO     | 101 | 101 | 102 | 105 | 104 | 105 | 100 | 107 | 100 | 10)  | 1010 | 1011 | 1501 | 1502 | 1505 |
| CO1    | 3   | 3   | 1   | 2   | 3   |     |     |     |     |      | 3    | 2    | 2    | 3    |      |
| CO2    | 3   | 3   | 1   | 2   | 3   |     |     |     |     |      | 1    | 2    |      | 3    |      |
| CO3    | 3   | 1   | 1   |     | 3   |     |     |     |     |      | 2    | 2    |      | 1    |      |
| CO4    | 3   | 2   | 2   |     | 3   |     |     |     |     |      | 1    | 2    | 3    | 1    |      |
| CO5    | 3   |     |     |     |     |     |     |     |     |      | 3    | 3    |      | 2    |      |